
IF-TH-30 

EM-Based Optimization Exploiting Partial Space Mapping 
and Exact Sensitivities 

John W. Bandler, Ahmed S. Mohamed, Mohamed H. Bakr, Kaj Madsen and Jacob SDndergaard 

McMaster University, Hamilton, ON, Canada L8S 4K1, www.sos.mcmaster.ca 

Abstiact - We present a family of robust techniques for 
exploiting sensitivities in EM-based circuit optimization 
through Space Mapping (SM). We utilize derivative 
information for parameter extractions and mapping updates. 
We exploit a Partial Space Mapping (PSM) concept where a 
reduced set of parameters is sufficient for parameter 
extraction optimization. Upfront gradients of both EM (fine) 
model and coarse surrogates can initialize possible mapping 
approximations. Illustrations include a two-section 1O:l 
impedance transformer and a microstrip bandstop fdter. 

I. INTRODUCTION 

The SM approach [l] involves a suitable calibration of 
a fine model by a physically-based “coarse” surrogate. 
The fine model may be time intensive and field theoretic 
and accurate, while the surrogate is a faster (less accurate) 
representation. 

We present, for the first time, new techniques for 
exploiting exact sensitivities in EM-based circuit design in 
the context of SM technology. If  the EM simulator is 
capable of providing gradient information, these gradients 
can be exploited to enhance a coarse surrogate. New 
approaches for utilizing derivatives in the parameter 
extraction process and mapping update are presented. 

An efficient procedure exploiting a PSM concept [2] is 
proposed. Several approaches for utilizing sensitivities 
and PSM are suggested. 

Alessandri et al. spurred the recent application of the 
adjoint network method using a mode matching 
orientation [3]. Currently, we are developing the adjoint 
technique within a method of moments environment [4]. 
These techniques facilitate powerful gradient-based 
optimizers. Our new work complements these efforts at 
gradient estimation for design optimization using EM 
simulations. 
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II. AGGRESSIVE SPACE APING 

A. Original Design Problem 

The original design problem is 

xi = arg minU(rj-(xJ)) 
xf 

Here, the tine model response vector is denoted by r- 
E!rY’, e.g., lS,ll at selected frequency points; m is the 
number of sample points; the fine model point is denoted 
x$v’, where n is the number of design parameters. U 
is a suitable objective function. XT is the optimal design. 

B. Parameter Extraction (PE) 

PE is crucial to SM: we extract a coarse model corres- 
ponding to a fine model response. For PE we designate a 
complete set of basic responses by RE%~‘, not 
necessarily identical to r, where M is the product of 
number of simulation frequency points and number of 
basic responses. Fine and coarse response vectors are 
denoted by Rfand R,, respectively. For example, we can 
use real and imaginary parts of S parameters. 

C. Aggressive Space Mapping Approach 

Aggressive SM solves the nonlinear system 

/=P(xy)-xf =o 
(2) 

= xc -x,‘=o 

for xf , where P is a mapping between the two model 
spaces and x~E%‘~‘. First-order Taylor approximations 
are given by 

P(X/) = P(x:“) + JP(X$q(Xf - xy, Pa) 

where the Jacobian of P at thejth iteration is expressed by 
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We designate an approximation to this Jacobian by the 
square matrix BE%“~“, i.e., B e Jp(x/). 

From (2) and (3b) we can formulate the system 

(xp) -x~)+B(i)(x~+‘) -x$j)) =o (54 

f(j) + B(j)&) = 0 (5b) 

Solving (5b) for /&‘I, the quasi-Newton step provides the 
next tentative iterate x/1”” 

(j+l) ,(A + h(j) 
x/ =I (6) 

III. A PROPOSEDALCXXITHM 

A. PE Exploiting Sensitivity 

Through the traditional PE process we can obtain the 
point x, that corresponds to xf such that 

Rf = R, (7) 

Differentiating both sides of (7) w.r.t. xf, we obtain 

(8) 

Using (4) the relation (8) can be simplified to 

Jf=J,B (9) 

where J, and J, are the fine and coarse Jacobians at xf and 
x,, respectively (Jf, J, E%~“; M2 n). Solving (9) for B 
yields a least squares solution. 

At the jth iteration we obtain xc(‘) through a Gradient 
Parameter Extraction (GPE) process: 

where il is a weighting factor and E = [el e2 . . . e,]. 

e. = Rf(xy))- R,(x,) 

E = J/(x:“)-J (x )B 
(11) 

c c 

B. Partial Space Mapping (PSM) 

Consider utilizing a subset of the physical parameters in 
the coarse space x,‘“” E sfh’, kin. PSM is illustrated in 
Fig. 1. It can be represented by 

(12) 

In this context (9) becomes 

J / = J,‘s”BpsM (13) 

where flSM~sbn and Jp”” E!IX~~ is the Jacobian of the 
coarse model at x,‘“” Solving (13) for flsM yields the 
least squares solution at thejth iteration 

Bpsu(j) = (JfsM(j)r JcpsM(j))-l JrsM(j)T Jy) (14) 

I PSM I 

L 
Fig. 1 Partial Space Mapping (PSM). 

Relation (5b) becomes underdetermined. The minimum 
norm solution for ho is given by 

h(j) 
nun noml 

= Bpsu(/‘)T BPs~(j)BPs~(j)~)-l(_f(j)) ( (15) 

C. Mapping Update Alternatives 

If we have exact derivatives throughout, we can use 
them to obtain B at each iteration in the PE. Note that this 
matrix can be iteratively fed back into the GPE process 
and refined before making a step in the tine model space. 
We can also use (14) to update flswl. 

If we do not have exact derivatives, various approaches 
to initializing or constraining B and ~‘~” can be 
devised, for example, we can use finite differences. Either 
matrix may be updated using a Broyden update. Hybrid 
schemes can be formally developed following the 
integrated gradient approximation approach to 
optimization by Bandler et al. [5]. 

On the assumption that the fine and coarse models share 
the same physical background, Bakr et al. [6] suggested 
that B could be better conditioned, in the PE process, if it 
is constrained to be close to the identity matrix I by 

B=arge Il[eT...e,‘~A6T...~Abi]rII: (16) 

where r,r is a ‘weighting factor, ei and Abi are the ith 
columns of E and AB, respectively, defined as 

E =Jf--JcB 

AB=B-I 
(17) 

The analytical solution of (16) is given by 
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B = (& + q’Z)-‘(cZTJ/ + ~‘1) (18) 

D. Proposed Algorithm 

Step 1 

Step 2 

Step 3 
Step 4 

Step 5 
Step 6 
Step 7 
Step 8 

Step 9 

Set j = 1. Initialize B = Z for the PE process. 
Obtain the optimal coarse model design x,* and 
use it as the initial fine model point 

x/ (I) = of = arg minU(r,(x,)) 
xc 

(19) 

If  derivatives exist execute GPE as in (10). 
Otherwise, execute the traditional PE where il = 0. 
Initialize the mapping matrix BpsM using (14). 
Stop if 

(20) 

Evaluate ho1 using (15). 
Find the next XT” using (6). 
Perform GPE or PE as in Step 2. 
If  derivatives exist use (14) to obtain Bpswl. 
Otherwise update Bps*> using a Broyden formula. 
Set j =j+ 1 and go to Step 4. 

The output of the algorithm is the fine space mapped 
optimal design Ff and the mapping matrix B? 

IV. EXAMPLES 

A. Capacitively Loaded IO:1 Impedance Transformer [7] 

We consider a “coarse” model as an ideal two-section 
transmission line (TL), where the “tine” model is a 
capacitively loaded TL with capacitors Ci = C, = Cs = 10 
pF. Design parameters are normalized lengths LI and Lz, 
w.r.t. the quarter-wave length L, at the center frequency 1 
GHz, and characteristic impedances 21 and 22. Thus, xf= 
[LI Lp Zt Zr]‘. Design specifications are 

IS,,/50.5, for0.5GHzIwI1.5GHz 

i with eleven points per frequency sweep. We utilize the 
real and imaginary parts of Sir in the GPE (10). We solve 
( 10) using the Levenberg-Marquardt algorithm available 
in the MatlabTM Optimization Toolbox [8]. 

Case 1. We consider x,‘“” = [LI L# while x/ = [Z, 
Z,]r are kept fixed. We employed adjoint analysis [9] to 
obtain all Jacobians. We initialize BPSM with (14). The 
algorithm converges in a single iteration (2 tine model 
evaluations). See Fig. 2. The final mapping is 

BPSM = 1.044 -0.017 0.009 0.002 

-0.011 1.079 -0.011 0.006 I 

= 0.4 

5 

0.2 

0 

0.5 0.7 0.9 1.1 1.3 1.5 

frequency (GHz) 
Fig. 2. Optimal coarse model target response (-), the fine 
model response at the starting point (+) and final design (0) for 
the capacitively loaded 1O:l transformer with LI and L2 as the 
PSM coarse model parameters. 

Case 2. We also apply the algorithm for x,‘“” = [Lz]. 
The result is very similar to Fig. 2. We also converge in a 
single iteration (2 fine model evaluations). The final 
mapping is 

BPSM = [1.067 1.186 - 0.0027 0.00921 

Case 3. We apply the algorithm for xc’“” = [LI]. The 
result is again similar to Fig. 2. Convergence is in a single 
iteration (2 tine model evaluations). The final mapping is 

BPSM = [I.133 0.685 0.0092 0.002971 

B. Bandstop Microstrip Filter with Open Stubs [2] 

Our approach is applied to a symmetrical bandstop 
microstrip filter with three open stubs. The open stub 
lengths are L,, Lz, L1 and WI, W,, W, are the 
corresponding stub widths. ‘An alumina substrate with 
thickness H = 25 mil, width W, = 25 mil and dielectric 
constant .sr = 9.4 is used for a 50 R feeding line. The 
design parameters are x/= [W, W, LO LI L,]? The design 
specifications are 

I 211 S 5 0.05 for 9.3 GHz I w I 10.7 GHz and, 

Is2,/ 2 0.9 for12GHzIoandw18GHz 

Sonnet’s emTM [lo] driven by EmpipeTM [l l] is 
employed as the fine model, using a high-resolution grid 
with a lmilx lmil cell size. As a coarse model we use 
simple transmission lines and classical formulas to 
calculate the characteristic impedance and the effective 
dielectric constant of each transmission line. We use 
OSA90/hopeTM [ 1 l] built-in transmission line elements. 
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Using OSA90/hopeTM x,* = [4.560 9.351 107.80 111.03 
108.7$ (in mils). We use 21 points per frequency 
sweep. We utilize the real and imaginary parts of $1 and 
&, in the traditional PE, for which il = 0 in (10). 

During the PE we consider x,‘“” = [Lt Ll]r while x/s = 
[ W, W, La]r are held fixed. Finite differences estimate the 
fine and coarse Jacobians. We initialize B with (14). 

The algorithm converges in 5 iterations (6 fine model 
evaluations). See Fig. 3. Results are shown in Table I. 
The final mapping is 

psM _ 0.570 0.168 0.209 0.911 0.214 
B - 

[ - 0.029 0.154 0.126 - 0.024 0.470 I 

TABLE I 
INITIAL AND FINAL DESIGNS FOR 

THE BANDSTOP MICROSTRIP FILTER USING L, AND L2 
Parameter X/“’ Xr”’ 

WI 4.560 7.329 
w2 9.35 1 10.672 
Lo 107.80 109.24 
LI 111.03 115.53 
L2 108.75 111.28 

All values are in mils 

-50 

Fig. 3. Optimal OSA90/hope coarse response (-) and em 

5 7 0 11 13 15 

frequency (GH.2) 

fine model response at the starting point (+) and at the final 
design (0) for the bandstop filter using a fine frequency sweep 
with L, and L2 as the PSM coarse model parameters. 

V. CONCLUSIONS 

We present a family of robust techniques for exploiting 
sensitivities in EM-based circuit optimization through SM. 
We exploit a PSM concept where a reduced set of 
parameters is sufficient in the PE process. Available 
gradients can initialize mapping approximations. Exact or 
approximate Jacobians of responses can be utilized. For 

Sexibility, we propose different, possible “mapping 
matrices” for the PE processes and SM iterations. 
Broyden updates can be used for approximated Jacobians. 
Trust region methodologies can be employed. Our app- 
roaches have been tested on several examples. 

Final mappings are useful in statistical analysis and 
yield optimization. Furthermore, the notion of exploiting 
reduced sets of physical parameters reflects the idea of 
postproduction tuning. 
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