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Abstract — We present a family of robust techniques for
exploiting sensitivities in EM-based circuit optimization
through Space Mapping (SM). We utilize derivative
information for parameter extractions and mapping updates.
We exploit a Partial Space Mapping (PSM) concept where a
reduced set of parameters is sufficient for parameter
extraction optimization. Upfront gradients of both EM (fine)
model and coarse surrogates can initialize possible mapping
approximations. Illustrations include a two-section 10:1
impedance transformer and a microstrip bandstop filter.

I. INTRODUCTION

. The SM approach [1] involves a suitable calibration of
a fine model by a physically-based “coarse” surrogate.
The fine model may be time intensive and field theoretic
and accurate, while the surrogate is a faster (less accurate)
representation,

We present, for the first time, new techniques for
exploiting exact sensitivities in EM-based circuit design in
the context of SM technology. If the EM simulator is
capable of providing gradient information, these gradients
can be exploited to enhance a coarse surrogate. New
approaches for utilizing derivatives in the parameter
extraction process and mapping update are presented.

An efficient procedure exploiting a PSM concept [2] is
proposed. Several approaches for utilizing sensitivities
and PSM are suggested.

Alessandri et al. spurred the recent application of the
adjoint network method using a mode matching
orientation [3]. Currently, we are developing the adjoint
technique within a method of moments environment [4].
These techniques facilitate powerful gradient-based
optimizers. Our new work complements these efforts at
gradient estimation for design optimization using EM
simulations.
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I1. AGGRESSIVE SPACE MAPPING

A. Original Design Problem
The original design problem is

x; =arg n;inU(rf(xf)) M
'

Here, the fine model response vector is denoted by ry
eR™!, e.g., |S)| at selected frequency points; m is the
number of sample points; the fine model point is denoted
x,eiR’”’, where # is the number of design parameters. U
is a suitable objective function. x; is the optimal design.

B. Parameter Extraction (PE)

PE is crucial to SM: we extract a coarse model corres-
ponding to a fine model response. For PE we designate a
complete set of basic responses by ReR™', not
necessarily identical to r, where M is the product of
number of simulation frequency points and number of
basic responses. Fine and coarse response vectors are
denoted by R and R,, respectively. For example, we can
use real and imaginary parts of S parameters.

C. Aggressive Space Mapping Approach

Aggressive SM solves the nonlinear system
f=P(x,)-x.=0
e @

*
=x,-x,=0

for x; , where P is a mapping between the two model
spaces and x.eR™, First-order Taylor approximations

are given by
P(x;) = P(xP) + T p(x D), - xP) (32)
X~ x4 Tp(xP)(x ) - %P )] (3b)

Through PE

where the Jacobian of P at the jth iteration is expressed by

T
R o | OPT axT
Jl(’j)=JP(x(fj))=[—_J =( pw
ax s =x) 7
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We designate an approximation to this Jacobian by the
square matrix Be R™", i.e., B = J,(x/).
From (2) and (3b) we can formulate the system

(= %)+ BO YD - xP) =0 (%)
f(j) +BDHED =0 (5b)

Solving (5b) for A%, the quasi-Newton step provides the
next tentative iterate x/*"

£ = x4 O (6)

III. A PROPOSED ALGORITHM

A. PE Exploiting Sensitivity

Through the traditional PE process we can obtain the
point x, that corresponds to x,such that

R, =R, @

Differentiating both sides of (7) w.r.t. x;, we obtain

T
(ax} ] (aR[ JT (6x§ )T ®
ox, ox, ox,
Using (4) the relation (8) can be simplified to
Jy~J.B ®

where J; and J, are the fine and coarse Jacobians at x;and
x,, respectively (Jy, J. eRM" M > n). Solving (9) for B
yields a least squares solution.

At the jth iteration we obtain x,% through a Gradient
Parameter Extraction (GPE) process:

) =argmin [le] Ae - 2T, 220 (o)

where A is a weighting factor and E=[e e; ... ¢,).
ey = R (x¥) - R,(x,)

] 11
E=J (x)-J.(x.)B an

B. Partial Space Mapping (PSM)

Consider utilizing a subset of the physical parameters in
the coarse space x[M ¢ SRM, k<n. PSM is illustrated in
Fig. 1. It can be represented by

e

xy x}

In this context (9) becomes
"f ~ J:SMBPSM (13)

where B"MeR™" and J.* eR** is the Jacobian of the
coarse model at x,”™. Solving (13) for B™¥ yields the
least squares solution at the jth iteration

BPSMU)  (JPSMUT g PSMOYAA g BSMGT g () (14)

PSM
X, [, xcPSM N
Tl psm
Fig. 1  Partial Space Mapping (PSM).

Relation (5b) becomes underdetermined. The minimum
norm solution for A% is given by
B9 = BPSMUOT (BPSM(j)BPSM(I')T )-1 (_f(j)) (15)

'min norm

C. Mapping Update Alternatives

If we have exact derivatives throughout, we can use
them to obtain B at each iteration in the PE. Note that this
matrix can be iteratively fed back into the GPE process
and refined before making a step in the fine model space.
We can also use (14) to update BFSMO),

If we do not have exact derivatives, various approaches
to initializing or constraining B and B™™" can be
devised, for example, we can use finite differences. Either
matrix may be updated using a Broyden update. Hybrid
schemes can be formally developed following the
integrated  gradient  approximation approach to
optimization by Bandler et al. [5].

On the assumption that the fine and coarse models share
the same physical background, Bakr et al. [6] suggested
that B could be better conditioned, in the PE process, if it
is constrained to be close to the identity matrix I by

B =argmin [l el nbo] - mb] T, 6

where 7 is a weighting factor, &; and Ab; are the ith
columns of E and AB, respectively, defined as

E =J,-J.B
AB=B-1

(17)

The analytical solution of (16) is given by
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B=(JIJ, +0*D"'JIJ, +7°D) (18)

D. Proposed Algorithm

Step 1 Set j = 1. Initialize B = I for the PE process.
Obtain the optimal coarse model design x,” and
use it as the initial fine model point

. x(f') =x, =argminU(r,(x,)) (19)

Xe

Step 2 If derivatives exist execute GPE as in (10).

Otherwise, execute the traditional PE where 4= 0.
Step 3 Initialize the mapping matrix B™ using (14).
Step 4 Stop if

lr<aorls - &] < @)

Step 5 Evaluate & using (15).
Step 6 Find the next x/*" using (6).
Step 7 Perform GPE or PE as in Step 2.
Step 8 If derivatives exist use (14) to obtain B™MY,

' Otherwise update B”*? using a Broyden formula.
Step 9 Setj =j+1 and go to Step 4.

The output of the algorithm is the fine space mapped

optimal design X, and the mapping matrix B,

IV. EXAMPLES

A. Capacitively Loaded 10:1 Impedance Transformer [7]

We consider a “coarse” model as an ideal two-section
transmission line (TL), where the “fine” model is a
capacitively loaded TL with capacitors C; = C,= C;= 10
pF. Design parameters are normalized lengths L, and L,,
w.r.t. the quarter-wave length L, at the center frequency 1
GHz, and characteristic impedances Z; and Z,. Thus, x,=
[Ly L, Zy Z,)". Design specifications are

|| 0.5, for0.5GHz < w<1.5GHz

with eleven points per frequency sweep. We utilize the
real and imaginary parts of S;; in the GPE (10). We solve
(10) using the Levenberg-Marquardt algorithm available
in the Matlab™ Optimization Toolbox [8].

Case 1. We consider x.”™ = [L, L,]" while xi =z
Z,)" are kept fixed. We employed adjoint analysis [9] to
obtain all Jacobians. We initialize B"™ with (14). The
algorithm converges in a single iteration (2 fine model
evaluations). See Fig. 2. The final mapping is

BPSH _ 1.044 -0.017 0.009 0.002
“[-0.011 1.079 -0.011 0.006
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Fig.2. Optimal coarse model target response (—), the fine
model response at the starting point (+) and final design (e) for
the capacitively loaded 10:1 transformer with L, and L, as the
PSM coarse model parameters.

Case 2. We also apply the algorithm for x,” = [L,).
The result is very similar to Fig. 2. We also converge in a
single iteration (2 fine model evaluations). The final
mapping is

BPM =[1.067 1.186 -0.0027 0.0092]

Case 3. We apply the algorithm for x.” = {L,]. The
result is again similar to Fig. 2. Convergence is in a single
iteration (2 fine model evaluations). The final mapping is

B™™ =[1.133 0.685 0.0092 0.00297]

B. Bandstop Microstrip Filter with Open Stubs (2]

Our approach is applied to a symmetrical bandstop
microstrip filter with three open stubs. The open stub
lengths are L,, L,, L; and W,, W, W, are the
corresponding stub widths. ‘An alumina substrate with
thickness H = 25 mil, width W, = 25 mil and dielectric
constant & = 9.4 is used for a 50 Q feeding line. The
design parameters are x;= [W; W, Ly L, Lg]T. The design
specifications are

|S21]<0.05 for9.3GHz < w <10.7 GHz and,
|S2]| 209 forl12GHz<wand w <8§GHz

Sonnet’s em™ [10] driven by Empipe™ [11] is
employed as the fine model, using a high-resolution grid
with a 1milxImil cell size. As a coarse model we use
simple transmission lines and classical formulas to
calculate the characteristic impedance and the effective
dielectric constant of each transmission line. We use
OSA90/hope™ [11] built-in transmission line elements.
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Using OSA90/hope™ x, = [4.560 9.351 107.80 111.03
108.75}" (in mils). We use 21 points per frequency
sweep. We utilize the real and imaginary parts of S;; and
S,; in the traditional PE, for which A= 0 in (10).

During the PE we consider x,”** = [L, L,]” while x{ =
[W W, Lo]T are held fixed. Finite differences estimate the
fine and coarse Jacobians. We initialize B with (14).

The algorithm converges in 5 iterations (6 fine model
evaluations). See Fig. 3. Results are shown in Table 1.
The final mapping is

BPSM—[ 0.570 0.168 0209 0.911

0.214
~0.029 0.154 0.126 -0.024 0.470

TABLEI
INITIAL AND FINAL DESIGNS FOR
THE BANDSTOP MICROSTRIP FILTER USING L; AND L,

Parameter xV x>
W, 4.560 7.329
W, 9.351 10.672
Lo 107.80 109.24
L; 111.03 115.53
L, 108.75 111.28
All values are in mils
0 e * praneteeee,
ﬂ ] o
o |t ]
10 + °
20 ! +
g ." o
£ \ =
4 -t
® o
40 -
5 7 9 1 13 15

frequency (GHz)
Fig. 3. Optimal OSA90/hope coarse response (—) and em
fine model response at the starting point (+) and at the final
design (#) for the bandstop filter using a fine frequency sweep
with L, and L, as the PSM coarse model parameters.

V. CONCLUSIONS

We present a family of robust techniques for exploiting
sensitivities in EM-based circuit optimization through SM.
We exploit a PSM concept where a reduced set of
parameters is sufficient in the PE process. Available
gradients can initialize mapping approximations. Exact or
approximate Jacobians of responses can be utilized. For

flexibility, we propose different: poss'ible “mappihg

matrices” for the PE processes and SM iterations.
Broyden updates can be used for approximated Jacobians.
Trust region methodologies can be employed. Our app-
roaches have been tested on several examples.

Final mappings are useful in statistical analysis and
yield optimization. Furthermore, the notion of exploiting
reduced sets of physical parameters reflects the idea of
postproduction tuning.
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